- 10. (a) Show that the equation yz + zx + xy = 0 represents a right circular cone. Find its axis and semi-vertical angle. (10)
 - (b) Find the equation of a right circular cone which passes through (2, 1, 3) and has its vertex at the point (1, 1, 2) and axis the

line (10)

Register Number:

Name of the Candidate:

5 2 5 0

B.Sc. DEGREE EXAMINATION, 2012

(MATHEMATICS)

(SECOND YEAR)

(PART-III)

(PAPER - III)

650. ALGEBRA AND SOLID GEOMETRY

$$\frac{x-1}{2} = \frac{y-1}{-4} = \frac{z-2}{3}$$

(Including Lateral Entry)

May] [Time : 3 Hours

Maximum: 100 Marks

Answer any FIVE questions.
ALL questions carry equal marks.

$$(5 \times 20 = 100)$$

1. (a) Solve the equation

$$x^5 - x^4 + 8x^2 - 9x - 15 = 0$$

if $-\sqrt{3}$ and 1 + 2i are two of its roots.

(7)

Turn Over

- (b) If α , β , γ are the roots of $x^3 + qx + r = 0$, find the value of $(\beta + \gamma) (\gamma + \alpha) (\alpha + \beta)$. (6)
- (c) If the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ are in geometric progression,

prove that
$$\left(\frac{a}{d}\right) = \left(\frac{b}{c}\right)^3$$
 (7).

- 2. (a) Solve $3x^6 + x^5 27x^4 + 27x^2 x 3 = 0$ (10)
 - (b) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$

find the equation whose roots are

$$\beta \gamma - \alpha^2$$
, $\gamma \alpha - \beta^2$, $\alpha \beta - \gamma^2$. (10)

- 3. (a) State and prove Fermat's theorem. (12)
 - (b) Show that $28! \equiv 666 \pmod{899}$. (8)

8. (a) Find, in symmetrical form, the equations of the orthogonal projection of the line

on the plane
$$3x + 4y + 5z = 0$$
 (10)

(b) Find the shortest distance and the equation of the line of shortest distance between the straight line

$$\frac{x+3}{-4} = \frac{y-6}{6} = \frac{z}{2} \text{ and } \frac{x-2}{-4} = \frac{y}{1} = \frac{z-7}{1}$$
(10)

- $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-4}{4}$ (10).
 - 9. (a) A plane passes through a fixed piont (a, b, c) and cuts the axes in A, B, C. Show that locus of the centre of the sphere

OABC is
$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$$
. (10)

(b) A sphere touches the plane

$$x -2y -2z -7 = 0$$
 at $(3, -1, -1)$ and passes through $(1, 1, -3)$. Find its equation.

(10)

3

- (b) Show that a finite commutative ring R without zero-divisors is a field. (5)
- (c) Let F be a field, let f(x) and g(x) be two polynomials in f[x] with $g(x) \neq 0$. Prove that there exist unique polynomials q(x) and r(x) such that f(x) = q(x) g(x) + r(x) where either r(x) = 0 or deg r(x) < deg g(x).

(10)

7. (a) A line makes angles α , β , γ , δ with the four diagonals of a cube. Prove that

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta =$

(10)

- (b) Find the image of the point (1, -2, 3) in the plane 2x - 3y + 2z + 3 = 0. (5)
- (c) Find the equation of the plane passing through the points (3, 1, 2), (3, 4, 4) and perpendicular to the plane

$$5x + y + 4z = 0. (5)$$

- 4. (a) Show that a function f: $A \rightarrow B$ is a bijection if and only if there exists a unique function g: B \rightarrow A such that, gof and fog are identity functions on A and B, respectively. (8)
 - (b) Prove that an equivalence relation R in a non-empty set S determines a partition of S and conversely, a partition of S defines an equivalence relations. (12)
- 5. (a) If H is a subgroup of a group G, show that the number of left cosets in H is the same as the number of right cosets of H.
 - (b) Show that if a group G has exactly one subgroup H of given order, then H is a normal subgroup of G. (6)
 - (c) Prove that a non-empty subset H of a subgroup G is a subgroup of G if and only if

$$a, b \in H \Rightarrow ab^{-1} \in H$$
 (7)

6. (a) Show that the ring $(Zn, \oplus,$ integral domain if and only if n is a prime (5) number.

Turn Over